Innovación

Investigadores españoles crean un papel capaz de convertir el calor residual en electricidad

Estas hojas de papel podrían utilizarse en aplicaciones donde la fuente de calor residual tuviera formas poco regulares o áreas extensas.

Imaginen generar electricidad a partir de calor residual para alimentar sensores en el campo de la Internet de las Cosas, la Agricultura 4.0 o la Industria 4.0. Y que el material termoeléctrico empleado para ello sea un tipo de papel. Justo en ello está trabajando un equipo de científicos del CSIC, ahondando en el prometedor campo de estos elementos capaces de transformar el calor en electricidad y aprovechando así una energía difícilmente utilizable que, de otro modo, se perdería.

Este dispositivo está compuesto de celulosa producida en laboratorio por unas bacterias, con pequeñas cantidades de un nanomaterial conductor –nanotubos de carbono-, por lo que su producción resulta sostenible y respetuosa con el medio ambiente”, explica Mariano Campoy-Quiles, investigador del Instituto de Ciencia de Materiales del CSIC. “En un futuro próximo, se podrían utilizar como dispositivos wearables, en aplicaciones médicas o deportivas, por ejemplo. Y si la eficiencia del dispositivo se optimizara aún más, este material podría dar lugar a un aislamiento térmico inteligente, o en sistemas de generación eléctrica híbridos fotovoltaicos-termoeléctricos”.

Como la celulosa bacteriana se puede fabricar en casa, tal vez estamos delante del primer paso hacia un nuevo paradigma energético, donde los usuarios se podrán fabricar sus propios generadores eléctricos. Todavía estamos lejos, pero este estudio representa un principio. “En vez de fabricar un material para la energía, lo cultivamos“, añade Campoy-Quiles. “Las bacterias, dispersas en un medio de cultivo acuoso que contiene azúcares y los nanotubos de carbono, van produciendo las fibras de nanocelulosa que acaban formando el dispositivo, donde quedan perfectamente dispersos los nanotubos de carbono”, continúa.

Nanocolumnas de titanio y teluro para evitar infecciones en los implantes médicos

Además, “debido a la alta flexibilidad de la celulosa y la escalabilidad del proceso, estos dispositivos podrían utilizarse en aplicaciones donde la fuente de calor residual tuviera formas poco regulares o áreas extensas, ya que se podrían recubrir totalmente con el material” indica Anna Roig, investigadora del estudio.

“Se obtiene un material mecánicamente muy resistente, muy flexible y deformable, gracias a las fibras de celulosa, y con una elevada conductividad eléctrica, gracias a los nanotubos de carbono”, explica Anna Laromaine, investigadora del estudio. “La intención es acercarnos al concepto de economía circular, utilizando materiales sostenibles y que no sean tóxicos para el medio ambiente, que se utilicen en poca cantidad, y que se puedan reciclar y reutilizar“, comenta Roig.

Roig afirma que, en comparación con otros materiales similares, éste “tiene una estabilidad térmica superior a los materiales termoeléctricos basados en polímeros sintéticos, lo que permite llegar hasta los 250 ºC. Además, no utiliza elementos tóxicos, y se puede reciclar fácilmente la celulosa, degradándola mediante un proceso enzimático que la convierte en glucosa. Así, se recuperan al mismo tiempo los nanotubos de carbono, que son el elemento más costoso del dispositivo“. Además, se puede controlar el grosor, el color e incluso la transparencia.

Campoy-Quiles explica que se han utilizado los nanotubos de carbono por sus dimensiones: “Gracias a su diámetro nanométrico y a las pocas micras de largo, los nanotubos permiten, con muy poca cantidad (en algunos casos hasta un 1%), conseguir que haya percolación eléctrica, es decir, un camino continuo donde las cargas eléctricas puedan viajar a través del material, permitiendo que la celulosa sea conductora y, al mismo tiempo, aislante térmico”. Además, el hecho de utilizar una cantidad tan pequeña de nanotubos (hasta un 10 % como máximo), conservando la eficiencia global de un material que tuviera el 100 %, se consigue un ahorro económico y energético muy significativo”, añade Campoy-Quiles.

Sobre el autor

Alberto Iglesias Fraga

Periodista especializado en tecnología e innovación que ha dejado su impronta en medios como TICbeat, La Razón, El Mundo, ComputerWorld, CIO España, Business Insider, Kelisto, Todrone, Movilonia, iPhonizate o el blog Think Big, entre otros. También ha sido consultor de comunicación en Indie PR. Ganador del XVI Premio Accenture de Periodismo, ganador del Premio Día de Internet 2018 a mejor marca personal en RRSS y finalista en los European Digital Mindset Awards 2016, 2017 y 2018.